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Summary 

Transient growth is a boundary-layer instability mechanism that leads to algebraic growth of distur- 

bances generated by surface roughness and freestream turbulence. Earlier AFOSR-funded research 
programs verified that stationary, roughness-induced disturbances undergo transient growth but that 

these disturbances are not optimal and depend critically on the details of the receptivity process. This 
project seeks to provide a more complete understanding of the receptivity of transient disturbances 
to surface roughness through a rigorous decomposition of steady disturbances across the continu- 

ous spectrum of Orr-Sommerfeld/Squire (OS) eigenmodes. This is achieved using the biorthogonal 
system of adjoint OS eigenmodes following an approach developed by Tumin (2003). Steady distur- 

bances are generated using a spanwise array of cylindrical roughness elements and are measured using 

hotwire anemometry. Data resulting from an independent direct numerical simulation (DNS) of the 
experiment is also used as inputs to the biorthogonal decomposition. 

Biorthogonal decomposition of the DNS data was successful. Disturbance profiles are reproduced 

with good accuracy and disturbance evolution is predicted with good accuracy for a distance exceeding 

100 boundary-layer scales downstream of the decomposition location. These results represent the 
first rigorous quantification of transient growth receptivity to realizable disturbance inputs in boundary 

layers. They are also the first to quantitatively describe the way in which realizable disturbance differ 
from optimal disturbances. 

Similar decomposition efforts using the experimental data as input was not successful. It appears 
that the spanwise disturbance components of the measurements hinder accurate decomposition. But, 

when they are not included in the partial data input to the decomposition, there is insufficient infor- 
mation to predict downstream behavior. A Monte Carlo-based technique was developed to provide a 
thorough examination of the experimental uncertainties of the spanwise disturbance data. This ap- 
proach provided good information about the uncertainties but did not reveal the source of the spanwise 

disturbance measurement errors. Work will continue toward successful decomposition of experimental 

data because DNS of realistic surfaces remains prohibitively costly. 

The project involved one faculty member and two graduate students and two undergraduate stu- 

dents at Texas A&M University. The project P.I. was Edward B. White, an associate professor in 
the Department of Aerospace Engineering. The two graduate students were Robert S. Downs III and 
Nicholas. A. Denissen. Both are Ph.D. candidates in Aerospace Engineering. 

SO\3QI\UM 



Contents 

Summary i 

Contents ii 

1 Introduction and Objectives 1 
1.1 Background  1 

1.2 Results of previous AFOSR-funded experiments  2 
1.3 Objective and Overview  5 

2 Receptivity and Decomposition into Modes 5 
2.1 Discrete and Continuous Modes  5 
2.2 Receptivity Analysis and Biorthogonal Decomposition  8 

2.3 Receptivity Analysis with Partial Data  9 

3 Measurement and Analysis of W and V 11 
3.1 Wind tunnel, instrumentation, flat plate and roughness  11 
3.2 Hotwire measurement techniques and results      12 

3.3 Monte Carlo analysis of measurement uncertainty  16 

4 Biorthogonal Decomposition 20 

5 Conclusion 23 

References 25 



Final Report for AFOSR Grant FA9550-07-1-0312 

Continuing Experiments on the Receptivity of Transient Disturbances 
to Surface Roughness and Freestream Turbulence 

Edward B. White 
Department of Aerospace Engineering 

Texas A&M University 

College Station, TX, 77843-3141 

1     Introduction and Objectives 

1.1    Background 

The stability of boundary layers has been analyzed most successfully using a normal mode decomposi- 
tion of the Navier-Stokes equations linearized about a steady basic state. Using this approach, a flow is 
considered unstable if any of its disturbance modes are subject to exponential growth or stable if all of 

its modes are subject to exponential decay. This analysis leads to the familiar Orr-Sommerfeld/Squire 
(OS) equations that can be solved using either a temporal or spatial formulation. The solution de- 
scribes the growth and decay of Tollmien-Schlichting (TS) waves at various Reynolds numbers, wave 

numbers and frequencies. For 2-D boundary layers, Squire's Theorem gives the well-known result that 
2-D, streamwise-traveling disturbances (i.e., those with spanwise wavenumber/3 = 0) are destabilized 

at lower Reynolds numbers than obliques waves and, consequentially, most of the work done to date 
on this system has focused on the growth of 2-D waves because they have been viewed as the most 

important to the transition process. 

While this approach successfully describes the boundary layer when the initial disturbance ampli- 
tudes are very low, a number of important problems that include high-amplitude freestream turbulence, 
high-amplitude surface roughness, or both, undergo a transition process that includes disturbance 
growth in regions where the Reynolds number is small and all the normal modes are subject to ex- 
ponential decay. This phenomenon was named bypass transition because the disturbances were said 
to bypass the well-understood TS route to turbulence. For many years bypass was attributed to un- 

known nonlinear interactions of the disturbance modes, not because of any direct evidence of such 
interactions, but rather because the transition mechanism in those cases defied any other explanation 
(Reshotko 2001). 

A relatively recent development that addresses the bypass transition question is a theory known as 

transient growth. Transient growth is an attractive theory because it appears to be capable of explain- 

ing many subcritical (i.e., subcritical to the growth of TS waves) transition phenomena of heretofore 
unknown origin, especially those involving spanwise-varying disturbances, exactly the sort of distur- 

bances produced by surface roughness or freestream turbulence. Transient growth is fundamentally 
different than TS wave growth because it results from an inviscid rather than a viscous mechanism 

and produces algebraic rather than exponential growth. Disturbances that experience this algebraic 
transient growth eventually decay exponentially but, prior to this decay, they are capable of undergoing 
very significant growth and should therefore be considered to be equally likely as TS waves to lead to 
transition. Despite the original suspicion to the contrary, transient growth is a linear mechanism. 



In order to quantify how much disturbance growth might result from transient growth, Farrell 

(1988) introduced the concept of an optimal disturbance. Farrell examined the initial value problem 
in an optimization context to find the initial disturbance that produces the maximum disturbance 

kinetic energy at a specified later time. Studies by Butler and Farrell (1992) and later studies by 

Andersson et al. (1999), Luchini (2000) and Tumin and Reshotko (2001) have identified that the 

optimal disturbances in Blasius boundary layer are stationary (w = 0), stream wise-oriented vortices 

that evolve into streamwise streaks. The spanwise wavenumber for the optimal disturbance is ß = 0.45 

where ß is made dimensionless using the boundary-layer scale, 6. 

Prior to a previous AFOSR Project (FA9620-02-1-0058), no experiments had been performed to 

deliberately examine whether transient growth of stationary disturbances occurs or whether rough- 

ness generates transient disturbances. Some evidence suggested that roughness can lead to transient 
growth (Tani et al. 1962; Reshotko and Leventhal 1981; Kendall 1981) but none of relevant experi- 
ments were conducted in a way that could conclusively verify this idea. Experiments conducted as part 
of AFOSR Project FA9620-02-1-0058 conclusively established that roughness does indeed stationary 
transient disturbances. But, those disturbances do not behave as optimal disturbance theory predicts. 

A more recent AFOSR-funded project, FA9550-05-1-0048, continued to study transient growth 

with a specific emphasis on receptivity. The original intent of that project was (1) to explore means 
of quantifying the receptivity of regular arrays of surface roughness, (2) to investigate distributed 

receptivity that occurs over randomly distributed three-dimensional surface roughness, and (3) to 

investigate receptivity to freestream turbulence. These three objectives were to be completed over a 
three-year period at Case Western Reserve University (CWRU). However, the project was canceled 

after two years when the PI, Prof. Edward White, moved from CWRU to Texas A&M University 

(TAMU). During the first two years of the project the second objective (investigating receptivity to 
distributed roughness) was completed and much of the work of first objective (quantifying receptivity) 
was completed. The present report details the one-year follow-on effort at TAMU to complete the first 
objective. The third objective (investigating receptivity to freestream turbulence), was not pursued 
due to delays with facility construction. 

1.2    Results of previous AFOSR-funded experiments 

As described above, experiments conducted as part of AFOSR Project FA9620-02-1-0058 were the 

first to deliberately examine whether surface roughness produces transient disturbances. Those ex- 

periments were conducted using cylindrical roughness elements arranged in a spanwise-oriented array 

some distance downstream of the leading edge of a flat plate, x^. The plate was oriented to provide 

a low-speed, zero-pressure-gradient Blasius boundary layer. The roughness heights, k, and spanwise 
spacings, Xk, were systematically varied to determine the effects of these parameters on the result- 

ing disturbances. Also varied was the ratio between the roughness elements' diameters, D, and the 
roughness elements' spanwise spacing. A sketch of the experimental setup is shown in Fig. 1. 

A number of key findings resulted from the experiments. These are principally reported by White 
(2002), White et al. (2005) and Ergin and White (2006). First, White (2002) establishes that 
spanwise arrays of 3D roughness elements do indeed generate stationary disturbances that undergo 
transient growth. White (2002) links the discrepancy between the theoretical predictions for optimal 
disturbances and the experimental observation to receptivity. That is, the process by which the 

roughness generates an initial disturbance distributes energy across the continuous OS spectrum in a 

way that differs from the optimum distribution. 

In order to better understand receptivity issues, White et al. (2005) conducted detailed studies 



-Roughness Array 

Measurement Plane 

Figure 1: Coordinate system, roughness array parameters and measurement plane orientation. 

that varied Rek and D/Xk for a roughness array at a fixed xk and unit Reynolds number, Re' = Uoo/v. 

The experiments focused on the role of Rek varied this parameter between values of 16 and 195 while 
maintaining D/Xk — 1/3. For this configuration, certain spanwise modes undergo clear transient 
growth, the modes whose wavelengths are Xk/3 and Xk/4, in particular. However, the Xk mode shows 
only weak growth after a dramatic initial decay; the Xk/2 mode only decays. Again, the key conclusion 

is that the distribution of initial disturbance energy amongst the relevant continuous modes is critical 

to the nature and magnitude of the transient growth. Moreover, no realizable disturbance appears to 

be optimal. While the experiments revealed that realizable disturbances are not optimal in a qualitative 

sense, it was not possible at that time to quantify the way in which realizable disturbances differ from 

optimal disturbances. 

The data presented by White et al. (2005) only extend to Rek = 195 because beyond that value, 
bypass transition occurs; Rice (2004) observed bypass at Rek = 254 for the same configuration. 
To examine the nature of this bypass transition, Ergin and White (2006) extended the Rek range 
to Rek = 339 and made a detailed study of the steady and unsteady flow at subcritical and this 
supercritical Rek. Those experiments revealed unsteady u' fluctuations in the roughness elements' 
wakes that grow while the U' disturbance is large. The most significant growth is associated with 
regions of large dil'/dz gradients. The u' growth is exponential and is thus thought to be the result 

of a Kelvin-Helmholtz-type instability; it is not transient growth of unsteady disturbances. Once the 

U' disturbance has sufficiently decayed, the u' disturbances decay as well. At Rek = 202 and 264, 

the initial U' disturbance is sufficiently small that the flow becomes stable to growing u' disturbances 

before they grow to large amplitude. However, in the supercritical case, the u' amplification rates are 

higher and persist for a longer streamwise distance. This gives the unsteady disturbances the ability 

to grow and bring about transition before they stabilize. 

After the bypass experiments by Ergin and White (2006) were completed, a DNS of the setup 
was performed by Rizzetta and Visbal (2007) for Rek values of 202 and 339. Those computations 
confirmed the basic transition mechanism identified by Ergin and White. However, the DNS found that 
for the supercritical case, Rek = 339, transition occurs much farther downstream in the experiment 
than it does in the computation. Also, the computation shows significantly more fine-scale disturbance 
detail than does the experiment. Thus, there was some concern that the Rek values reported by Ergin 
and White (2006) might have been incorrect. If the reported values were lower than the actual values, 
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Figure 2: Scaled disturbance energies. 

this would result in the discrepancies between the DNS and experimental results. 

To resolve the inconsistencies between the experiments by Ergin and White (2006) and the DNS 

by Rizzetta and Visbal (2007), an experiment was conducted by Denissen and White (2008) that 
duplicated the dimensionless parameters of the Ergin and White experiment. The results of this new 
experiment suggests the previous experiment and the DNS are largely in agreement. The results also 

revealed that the Reynolds number based on the boundary-layer thickness at the roughness location, 

Regk, has a more significant effect on transient growth than previously believed. A principal difference 

between the Ergin and White results and the more-recent Denissen and White results is that Denissen 

and White observe the small-scale features present in the DNS while the earlier experiment did not. 
This might be attributable to the somewhat wider element-to-element spacing used by Denissen and 

White and/or the fact that their experiment used sharp-edged manufactured roughness elements while 

the earlier experiment used paper elements. Denissen and White also confirm the DNS prediction for 
breakdown location. The longer breakdown distance in the Ergin and White experiment is attributable 

to nonuniformities in the paper roughness elements. Finally, the new result by Denissen and White 
is a clarification of the role of Re$k. Figure 2 shows the stationary disturbance energies measured by 
White and Ergin (2003), Rice (2004) and White et al. (2005) (blue symbols) plus those by Ergin and 
White (2006) and Denissen and White (2008) (red symbols). This figure shows two clear bands of 
total disturbance energy that are consistent across large ranges of Rek but are different when Re^ 
is changed. The blue symbols correspond to Re$k values of 421 and 431 whereas the red symbols 

correspond to Resk values of 484, 491 and 520. At higher Re$k, the total disturbance energy decreases 
more rapidly in the near-wake region, reaches a smaller minimum value and then grows more rapidly 

than at lower Re$k. 

Additional work conducted as part of AFOSR Project FA9550-05-1-0048 includes a study of 
receptivity and growth over distributed roughness and simultaneous measurements of U' and W 

disturbances produced by a spanwise roughness array. Results for the distributed roughness experiment 



are presented in the final report for Project FA9550-05-1-0048 and by Downs and White (2008). The 

If, W data are used as part of the current-year effort to quantify transient growth receptivity. 

1.3    Objective and Overview 

The present work, AFOSR Project FA9550-07-1-0312, is a one-year conclusion of AFOSR Project 

FA9550-05-1-0048. The focus of both is the receptivity of stationary transient disturbances to surface 

roughness. The work reported here aims to provide a rigorous quantification of receptivity to a spanwise 
array of cylindrical roughness elements as pictured in Fig. 1. To achieve this, measurements of W and 

W obtained in the elements' wakes under project FA9550-05-1-0048 are analyzed using a biorthogonal 

decomposition procedure developed by Tumin (2003). There are a number of difficulties with applying 

Tumin's method directly to experimental data. Principally, the data is affected by measurement 

uncertainty and only some of the needed disturbance components are available in the experiment. 
Both of these issues are addressed. As additional tasks, the experimental data is further compared to 

the DNS results by Rizzetta and Visbal (2007) and the DNS data is subjected to the same biorthogonal 
decomposition as the experimental data. The comparisons reveal significant differences between the 

W and V obtained in the experiment and the DNS. These disturbance components represent the 
initial condition of transient growth and are thus critical inputs to a receptivity analysis. 

2    Receptivity and Decomposition into Modes 

2.1    Discrete and Continuous Modes 

TS waves represent discrete eigenmodes of the OS system. At a specified frequency, spanwise 

wavenumber and Re$, a discrete eigenmode exists with a certain complex-valued streamwise wavenum- 
ber a and complex-valued wall-normal mode shapes for the velocity and pressure perturbations. The 

complex a allows for both a streamwise wavelength and exponential growth or decay in the streamwise 

direction; the complex mode shapes allow for phase variations in the wall-normal direction. 

Transient disturbances are fundamentally different that TS disturbances. In the transient growth 
scenario, one specifies a frequency (which may be w = 0 to represent stationary disturbances), a 
spanwise wavenumber ß and Re$ and may find that no exponentially growing solutions exist; only de- 
caying modes can be identified. Nevertheless, algebraically growing disturbances may still be observed. 

The reason is that the OS system admits a continuous spectrum of eigensolutions in addition to the 
discrete solutions that are manifested as TS waves. Transient disturbances are composed of all the 

modes of the continuous spectrum each of which has a particular complex amplitude. Because the 

OS system is not self-adjoint, the various continuous modes are not orthogonal. So, in spite of the 

fact that all the continuous modes decay, their non-orthogonality allows for some transient algebraic 
growth prior to eventual exponential decay (Schmid and Henningson 2001; Reshotko 2001). 

The continuous spectrum of disturbances that produces transient growth arises from the correct 

treatment of the OS equations far from the wall at y = 0. The OS equations follow from the 
Navier-Stokes equations linearized about a parallel flow basic state: 

du'     dv'      dw' 

dx       dy       dz 

du1     ,,01/       ,dU dp       1 „o / 
 \-U \-v— = —--I V2u (2) 
dt dx dy dx     Re5 

K ' 



cV      a/ dp     l „2 , 

äF + uä?  = "a? W <3) 

"äT^äx"  ^  "äi + ^vV (4) 

where L/ = U(y) and t/,  v',  w' and p' are linear perturbations. Applying Fourier transforms in x, z 

and t allows the vector of disturbance quantities to be written as 

<£ = <£(y)exp[/(ax + j0z-wt)] + c.c. (5) 

where <p = (u', du'/dx, v', p', w', dw'/dx)T and c.c. represents the complex conjugate of the preceding 

term. This allows Eqns. (l)-(4) to be represented as 

i-» (6) 
where the components of A are functions of a, ß, u>,  Re$, and U(y).  In the spatial problem, a is 

unknown so solving Eqn. (6) for 4>(y) and a is an eigenvalue problem. 

In order to solve the eigenvalue problem to find discrete TS wave solutions, one iterates to find 
a> 4>(y) Pairs tnat satisfy Eqn. (6) subject to no-slip and no-penetration boundary conditions at the 
wall and a condition that $ approaches zero as y approaches infinity. The solutions are referred to as 
discrete because only certain isolated points in the complex a plane are solutions. 

A more general solution to Eqn. (6) can be found if the boundary condition as y goes to infinity 
is relaxed. The discrete mode solutions require 0 to approach zero as y goes to infinity. However, 

the physical boundary condition that disturbances decay as y increases can be satisfied through a 
superposition of many disturbances that do not decay. That is, instead of seeking a single solution to 
Eqn. (6) that satisfies the boundary condition $ -> 0, one can seek a set of solutions that collectively 
satisfy that boundary condition while each member of the set only satisfies \cp\ < oo. 

The effect of the relaxed boundary condition on solutions to Eqn. (6) can be seen most clearly 

outside the boundary layer as y goes to infinity. In this limit, U{y) is constant so the equation has 

constant coefficients and its solutions $ take the form 

<£(y) = ^exp(Ay) (7) 

where the $'s are constants. The six A's that result from this approach are 

Ai    =    -V/«2+/32 (8) 

A2    =   +v/a2+/32 (9) 

A 3,5 =   -y/i(a-üj)Res + a2+ß2 (10) 

A4.6   ■   +yJi(a-aj)Re5 + a2+ß2 (11) 

where the branch cut of the square root function is selected such that the real part of the square 
root is positive. Discrete solutions only contain the odd-numbered A's because only these three go to 

zero as y goes to infinity. However, for the relaxed boundary condition, the solutions need not decay 
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Figure 3: Schematic diagram of complex eigenvalues a (left); the discrete TS mode (middle) and the 
real part of a continuous-spectrum mode (right). 

to zero but may remain at finite amplitude. Thus, the A values can be purely imaginary and, from 

Eqn. (7), this alternative produces solutions that undergo fixed-amplitude oscillations in y outside the 
boundary layer. 

To investigate the behavior of the oscillatory solutions, A values are parameterized as A — ik 
where k is a real parameter that represents the wavenumber of the wall-normal oscillation. The first 

two solutions Ai and A2 are referred to as pressure modes because they are associated with non-zero 
pressure perturbations outside the boundary layer; the other modes are referred to as vorticity modes 

because they are associated with non-zero vorticity perturbations outside the boundary layer. Figure 3 

is a schematic representation of the complex a. values that result upstream of the TS waves' minimum 

critical Reynolds number. The red curves represent the pressure and vorticity modes; the black dot 

indicates the least-stable discrete TS wave. The pressure and vorticity solutions branches are referred 
to as branches of the continuous spectrum because each value of k is associated with a particular 

disturbance amplitude. The dots at the ends of the red curves represents a when k = 0. The 

curves move toward larger a, as k increases. The imaginary part of a is the decay rate so higher-/c 
disturbances decay faster than lower-/( disturbances and pressure modes decay faster than vorticity 
modes because Res is large. It is notable that when the disturbance of interest is stationary, w = 0, 
the vorticity branch collapses onto the pressure branch. Also notable is the very slow decay rate of 
the k = 0 vorticity mode. 

Returning to the notion that a physical disturbance (which decays to zero as y goes to infinity) can 

be represented by a superposition of discrete modes plus the continuous spectrum modes, the physical 
disturbance <p associated with a particular frequency and spanwise wavenumber can be represented by 

<l)(x,y,z, t) = 

h E / c(a(*)) ft*- «(*)) exp[/ (a(k)x +ßz- uit)) dk 
p,u ' 

+ — 53Cj $j(y) exp[/ (ajx+ßz - ut)] + c.c. 
27T 

(12) 

In this expression, the C values are complex amplitudes of each of the modes and the indicies p, u> and 
j represent the pressure branch, the vorticity branch and the index of the discrete modes, respectively. 
The solution of the eigenvalue problem gives $ and a for each k or j. Those calculations do not give 

the amplitude coefficients C; those values would be predicted by a receptivity theory (if one existed) 



or should be measured in an experiment via a decomposition of <p data using an inverse transform of 

Eqn. (12). (This is the topic of Sec. 2.2.) Then, because the downstream disturbance evolution is 

controlled by the decay rates a, the C values representing the initial disturbance are sufficient to fully 

describe the downstream disturbance evolution. 

As described earlier, optimal transient disturbances have been identified by Andersson et al. (1999), 

Luchini (2000) and Tumin and Reshotko (2001) to be stationary disturbances with ß = 0.45. These 

disturbances are initially counter-rotating streamwise-oriented vortices that induce streamwise-oriented 
streaks of low-speed and high-speed fluid. The optimal disturbance represents one particular collection 

of complex amplitudes for the continuous spectrum modes. The experiments by White (2002) and 

White et al. (2005) establish that roughness-induced disturbances are not optimal; roughness-induced 

disturbances must be represented by a collection of continuous-mode amplitudes that differs from 
the optimal amplitudes. However, prior to this project this difference has never been quantified and 
no receptivity theory describes how particular roughness features might affect the continuous mode 

amplitudes. If such a theory existed, it might be possible to predict the nature of the transient growth 
resulting from a particular roughness configuration. The result would be a clearer link between stability 

theory and experimental measurements of transient growth. Thus, the over-arching objective of this 

project is to provide input data to the decomposition, the 0 of the right-hand side of Eqn. (12), and 

to attempt a decomposition that gives C(a) for that configuration. 

2.2    Receptivity Analysis and Biorthogonal Decomposition 

The theoretical basis for decomposing disturbances into non-orthogonal sets of 4>{y) modes has been 
established by Zhigulev and Tumin (1987), Tumin et al. (1996) and Tumin (2003). This project follows 
Tumin's approach, particularly the 2003 paper. The challenging aspects of this arise from the facts 
that the modes are not orthogonal and that they are functions of a continuously varying parameter 

k. To begin, experimental data is collected in physical space (x,y,z, t) and Fourier transforms in 
z and t are performed to give complex wall-normal mode shapes for particular ß, u pairs. These 

mode shapes are to be decomposed into the set of continuous modes $(y,a). Because the modes 
are the non-orthogonal solutions to the OS equation, the adjoint OS equation must be developed and 

solved to give a continuous set of adjoint eigenmodes, -4>{y, a). Then, the experimental data must be 

projected onto the 0's by evaluating inner products of the data with these adjoint eigenmodes. The 

projection results in the C values that are the amplitudes of each of the 4> modes in Eqn. (12). 

To perform the biorthogonal decomposition, Tumin (2003) lays out a several-step procedure. To 

begin, it is necessary to calculate the adjoint eigenmodes. These modes are solutions of 

dy 
(13) 

where A is the OS matrix operator that appears in Eqn. (6) and T stands for transpose. The 
eigenvalues a resulting from adjoint problem, Eqn. (13), are the same as those of the direct problem, 

Eqn. (6). 

Once the tp functions are generated, the biorthogonality relationship between 4> and ■$ must be 
developed. To do this, the six-component disturbance vector 0 is expanded to nine components, the 

original six plus du'/dx, dv'/dx, and dw'/dx (the hats on the disturbance quantities indicate that these 

are Fourier transforms in z and t) and A is split into two 9x9 matrices: 

A = A1 + iaA2. (14) 



These steps avoid nonlinearities in a by eliminating explicit second derivatives with respect to x. To 

develop the orthogonality relationship, the expanded terms are combined in an inner product between 

<p evaluated at wavenumber a, (pa, and $ evaluated at wavenumber a', ipa>. For later convenience, 

the inner product is weighted by exp(—ey2), a function that goes to one as e goes to zero. All this 

gives 

i>T
aMa e-y'dy. (15) f 10 

Introducing the expanded form of A, integrating by parts and applying Eqn. (13) yields 

2/e - f°° Va4a ye-^dy =  H föA2$a e^dy. (16) 
a Jo Jo a' 

This equation shows that as € goes to zero, the left-hand side equals zero when a ^ a1. Thus, $ ar)d 
tp are orthogonal and the orthogonality relationship only depends on A2. When a = a', the left hand 

side must be evaluated in the limit of e and a' — a going to zero. The value of the left-hand side in 
that limit is Q(a), a function that also depends implicitly on ß, tu, Re$, and U(y). The function Q(a) 

represents the normalization constants of the biorthogonal decomposition. 

With all this background established, the C(a) of an experimentally measured disturbance can be 

established by taking the inner product of the measured data obtained at some x location, $\x, with 

Tpa at all values of a along the branches of the continuous spectrum: 

l     r°° 

Because Q(a) has already been evaluated in the limit e —► 0 and because <j)\x goes to zero as y goes 

to infinity, there is no need for the exp(—ey2) weighting function. It is possible to manipulate this 
expression and return to the six-component form of the disturbance vectors and adjoint. This form of 

the inner product is 

c(a,-öwJÜ «s*"*- <18) 

Thus, the nine-component forms of the disturbances are only needed for intermediate steps in the 
theoretical development; they are not needed for the evaluation of experimental data. 

Evaluating Eqn. (18) is the rigorously correct means of analyzing the receptivity of the boundary 
layer to input disturbances. The C(cc) on the branches of the continuous spectrum give the amplitude 

of a disturbance at the streamwise position x at which the disturbance is measured. Combined with the 

subsequent growth or decay of each of the modes, the C's also predict the downstream disturbance 
evolution. To the extent that the linear-disturbance and parallel-flow assumptions are correct, the 
x location at which Eqn. (18) is evaluated is not important; any location would produce equivalent 

results. However, because Re$ is increasing with x, deviations from the predictions should be expected 
to increase with distance downstream from the evaluation location. 

2.3    Receptivity Analysis with Partial Data 

When experimental data is used as the input to Eqn. (18), two difficulties immediately arise. First, 
experimental data is uncertain and noisy so uncertainty propagates into the C(a). So, although the 
C(a) will perfectly reproduce a measured disturbance at the evaluation location, the downstream 
disturbance evolution may not be correctly predicted by the C(a). Therefore, it is necessary to assess 



the impact of experimental uncertainty on Eqn. (18) and disturbance-growth predictions. This activity 

is beyond the scope of the present work but is being carried out as a follow-on activity. 

A second, more immediate difficulty of using experimental data is that not all disturbance compo- 

nents can be measured. The streamwise disturbance u' and its derivative du'/dy are straightforward 
to measure. The spanwise disturbance w' and its wall-normal derivative have also been measured as 

part of the previous phase of this project (AFOSR Project FA9550-05-1-0048). However, v' and pf 

are essentially unmeasurable, especially for stationary disturbances. Luckily, in spite of having only 

partial data, it is still possible to evaluate Eqn. (18) using an approach suggested by Tumin et al. 

(1996). The basic idea is to replace unmeasured components of the $\x input disturbance vector with 

appropriate scalar components of Eqn. (12). This approach also assumes that only the vorticity mode 

of the continuous spectrum contributes to the measured disturbance. For a case in which u' and w' 
are measured but v' and p' are not, the disturbance vector is given by 

/ Ölx 

dü/dy\x 

JC(<x(k))$v(cc(k))dk/2ir 

W\x 

dw/dy\x 

VJ C(cc(k))$p(a(k))dklint ) 

to» (19) 

where $v(a(k)) and $p(a(k)) represent the v' and p1 components of the $(a(k)) mode, respectively. 

When Eqn. (19) is substituted into Eqn. (18), the unknown C(o;)'s appear on both sides of the 

equation. To account for this, individual terms on the right-hand side of Eqn. (18) that contain C(a) 
must be extracted and moved to the left-hand side. For unknown v' and p', the result is 

C(a) - ^—^ JJ C(a(k)) [Res fc(y, a(/r))0p(y. <*(*)) 

+ (~ ~ iU(y) dkdy 

= ö^y / {[(Re<5 u(y) - 2ia) i*<y>a) ~ &(y. a)] u{y) 

" RTS^' a)ä^ + (ResLJ(y}"2/a) ^e(y'a)^)} dy- (20) 

This expression is evaluated at a particular a to give C at that a. However, the left-hand side 
includes integrals over C(a(k)) so a straightforward solution is not possible. Instead, the integrals are 
replaced with sums over N discrete values of k that approximate the continuous spectrum. Defining 
Cn = C(a(kn)), Eqn. (20) becomes 

(l-L)C = R (21) 

where the N x N matrix L represents terms that include C(a(k)) to account for unmeasured distur- 

bance components, / is the identity matrix, C is the length-A/ vector of unknown C(a(/c„))'s and R 
is a length-/V vector of the right-hand side terms. Solving Eqn. (21) requires inverting (/ - L). The 

less is known about the input disturbance, the closer this matrix will be to singular. Thus, the less is 

known about the input disturbance, the more prone this process is to amplifying experimental errors. 
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3    Measurement and Analysis of l/l/' and V 

The previous sections make clear that to perform a rigorous receptivity analysis using experimental 
data, it is necessary to measure as many of the disturbance components as possible with as much 

accuracy as possible at some x location downstream of the disturbance source. To this end, measure- 
ments of disturbances generated by a spanwise array of cylindrical roughness elements were completed 

previously during AFOSR Project FA9550-05-1-0048. Streamwise and spanwise components of the 
roughness-induced stationary disturbances were measured in multiple spanwise/wall-normal planes and 
this data was used to estimate the wall-normal disturbance velocity using the continuity equation. In 

this section, the approach to these measurements and estimates of experimental uncertainty are given. 

The following section gives results for the biorthogonal decomposition of this data. 

3.1 Wind tunnel, instrumentation, flat plate and roughness 

The wind tunnel facility used for the experiments was the Case Western Reserve University (Case) 
wind tunnel, an open-return facility with a 710 mm x 710 mm x 2.7 m test section and a maximum 
operating speed of 25 m/s. The tunnel's design follows the recommendations of Reshotko et al. 
(1997) for flow quality. Operating at 12 m/s, the total (not high-pass-filtered) u'rms level in the test 
section is approximately 0.35% L^. Although this level may seem high relative to other tunnels, 
fluctuation spectra indicate that approximately 93% of the fluctuation power is contained below 1 Hz, 
a conservative cutoff frequency for AC-coupling filters. To compare the fluctuation measurements 
of the Case tunnel to facilities whose quoted turbulence levels are measured using traditional AC- 

coupled fluctuation-intensity measurements, only the u' intensity above 1 Hz should be considered. 

Restricted to these frequencies, the Case tunnel's u'rms level is 0.09% COQ. Alternatively, separating 

the contributions of acoustic and turbulent velocity fluctuations in the manner suggested by Reshotko 
et al. (1997) shows that the turbulent u'rms amounts to 0.05% f«,. 

Velocity measurements are made using 2.5-jim-diameter hotwire probes. Streamwise velocity 

measurements are made concurrently in the boundary layer and the freestream. The velocity measured 

by the boundary layer probe is normalized on a point-by-point basis by the freestream velocity (7«, to 
give a nondimensional boundary layer velocity. Measurement of the flow field is accomplished by 
collecting data in dense 2D grids at varying streamwise locations. The motion of hotwire probes is 
controlled by an externally mounted traverse that provides approximately 1200 mm of travel in the 
streamwise direction (x), 190 mm of travel in the spanwise direction (z) and 70 mm of travel in the 
wall-normal direction (y). The stepper motors that drive the traverse provide this motion in steps of 
3.2 /zm, 1.6 ßm and 1.6 ß<m, respectively. 

The flat plate model was originally constructed by Reshotko and Leventhal (1981). The model is 

mounted vertically in the tunnel 0.5 m downstream of the test section inlet, with the test side located 
approximately 250 mm from test section's side wall. The plate is constructed of aluminum and is 

9.5 mm thick, 635 mm in span, and 1100 mm in length. The plate's leading edge is elliptical with the 

flat portion of the plate beginning 25 mm from the leading edge. A hinged trailing-edge flap is used 

to ensure that the incoming flow stagnates on the test side of the plate. The test side of the plate is 
polished to a near-mirror finish. 

The roughness array that generates the stationary disturbances is described by Ergin and White 
(2005). Briefly, the setup is the same as is pictured in Fig. 1 with xk = 300 mm (xv i e = —7 mm), 
a spanwise spacing of Xk — 19 mm, a diameter d — Xk/3 and an amplitude of Re^ * 202. For these 
measurements the unit Reynolds number is Re' — 764 x 103 m_1. 
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3.2    Hotwire measurement techniques and results 

Measurements are performed by hotwire anemometers that are moved through spanwise-wall-normal 

planes oriented as shown in Fig. 1 at various x locations. The hotwires are moved through 38 0.5-mm 

spanwise steps per 19-mm roughness wavelength, X^. This permits spatial phase-lock averaging to be 

performed on the data in order to minimize random variations in the steady velocity field. 

Streamwise velocity measurements are obtained using straight-wire probes and are decomposed 
into a spanwise-invariant basic state, a stationary disturbance and an unsteady disturbance as 

u(x, y, z, t) = Ü(x, y) + U'(x, y, z) + u'(x, y, z, t). (22) 

The basic state profile U is computed by spanwise phase-locked averaging the steady velocity profiles 

measured at z locations that are judged to be outside the influence of upstream roughness. This 
averaged profile is expected to be least affected by the roughness and most representative of Blasius 

flow. 

Boundary-layer integral quantities, 5* and 9 are computed from basic-state profiles at each x 

and these measurements are used to verify the plate's alignment for zero pressure gradient and to 
nondimensionalize the wall-normal coordinate as?) = y/5. First, a zero-pressure-gradient condition 

is verified by the shape factor H = 5*/9 falling in the range 2.59 ± 0.05 (Saric 2007). If this is 
verified, the boundary-layer thickness scale 6 is given by 5 — 5*/1.7208 and 5 = 0/0.664. For each 
experimental configuration, a nonlinear least squares fit is performed to the 6(x) data resulting from 
both <5* and 6 as 

where the fit parameters arexv.i.e., the virtual leading edge location, and Re', the unit Reynolds number, 
Uea/u. Uncertainties are known for the experimental Ö values so uncertainties are computed for the 
fit parameters. Applying these values allows calculation of boundary-layer and roughness parameters 

and those parameters' uncertainties at any x location. 

Because spanwise-periodic roughness is used, velocity profiles measured aft of the roughness can 
be phase-locked averaged using the periodicity X^- This process results in a representative flow field 
for one roughness array length. The steady boundary layer disturbance is defined as the deviation from 

the basic state. Thus, the steady disturbances U'(r],z) are computed by subtracting the basic state 

profile from each of the other averaged profiles obtained behind the roughness. To collapse this steady 
disturbance field to a single profile that is representative of the overall flow disturbance the roughness 

creates, the root-mean-square of the steady disturbance profiles is taken in the spanwise direction. 
The result is a single disturbance profile, U[ms(ji). The total disturbance energy associated with the 

streamwise disturbance component is quantified as the wall-normal integral of this profile squared: 

E%1=  n[U'rms(V)]2dV. (24) 
Jo 

Equivalent measures of the total disturbance energy associated with the V and W components would 

be Erms and Erms . respectively. In practice, this integration is carried out using a simple trapezoidal 
integration scheme. The upper limit of integration is in the freestream where the disturbance profile is 
close to zero. Typically, 77 values of 10 to 12 are used for this purpose. The overall total disturbance 

energy is the sum of the three components. 

Although the total streamwise disturbance energy is a useful means of quantifying the streamwise 
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disturbance evolution, it gives no information as to the behavior of individual spanwise wavelengths in 

the velocity disturbance field and how these wavelengths might be connected to the roughness. To 

examine these details, the U'(r],z) disturbances are transformed using a spatial Fourier transform in 

the spanwise direction to give U(r),ß). This operation is completed using two roughness patches as 

a spanwise sampling length. Overlapping four such transforms by 50% and complex-averaging the 

results achieves the optimal reduction in the variance (Press et al. 2001). 

After performing the Fourier transforms, the power spectral density (PSD) of the signal is com- 

puted. The PSD is essentially |Ö|2 normalized such that: 

[4ms(r?)]2=£PSD(7,,/3m). (25) 
T2 _ 

m=0 

The disturbance energy contained in any particular mode can be found in a manner similar to the total 

disturbance energy. The PSD component of interest is integrated in the wall-normal direction using a 

simple trapezoidal scheme: 

£Öm = J~PSD{v,ßm)dv. (26) 

As a consequence of the PSD normalization, the total disturbance energy is equal to the sum of the 

disturbance energies in each of the integer modes: 

^l=±E{U
k]m. (27) 

m=0 

Spanwise velocity measurements are obtained using a pair of slant-wire probes with different angular 
orientations at the same location. For this purpose, a hotwire sting is used that carries a combination 
of slanted and straight hotwire sensors (Fig. 4). This sting assembly includes a shaft that rotates in 

a streamlined casing and allows angular calibration of slanted hotwires. Outside the test section, the 
shaft is connected to an angle indicator and the sting assembly is rigidly attached to the traverse. 

Inside the test section, the hotwire sensors are placed perpendicular to the shaft's axis through a 

multiple-hotwire holder. The angular position of the sensors can be adjusted by rotating the spindle 

of the angle controller with a precision of 0.2°. The multiple-hotwire holder is designed to carry four 

hotwires. One hotwire is a straight sensor in the freestream; the remaining three sensors are in the 

boundary layer. The boundary-layer sensors are positioned in a trident design with one straight sensor 
in the middle and two slanted hotwire sensors mounted 9.5 mm one either side of the the center probe. 
Using a separation that is an integer multiple of the spanwise step permits all three boundary layer 

sensors to be placed at the same measurement location at three different spanwise traverse steps. 
Naturally, this requires excellent alignment of the flat surface with the traverse plane and the sensors 
with respect to each other and great care is exercised to achieve this alignment. 

Slanted hotwire angle calibration is performed following the recommendations of Bruun (1995). 

First, the yaw angle of each wire is determined by gradually rotating the sensor in the freestream and 
monitoring the bridge voltage. When the bridge voltage is a maximum, the maximum cooling rate 

is achieved because the impinging velocity is perpendicular to the wire axis. The calibration of all 

four sensors is performed simultaneously. First, the sting is positioned so that all hotwires are located 

in the freestream. Second, it is rotated 5° clockwise from its position during an experiment and a 

velocity calibration is performed. Third, the sting is rotated 10° counterclockwise and another velocity 
calibration is performed for the same tunnel speed range. Finally, data from both velocity calibrations 
at two different angles are combined and the calibration constants are computed by using the King's 
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Figure 4: Multiple-probe hotwire sting with angular adjustment capability. 

Law and Hinze's formula (Hinze 1959): 

Ve= (A + BE2Y = V (COS2 a + /c2sin2 a) 
1/2 

(28) 

In these equations A, B and n are calibration constants, V is the freestream speed (during the 
calibration procedure only), Ve is the effective cooling velocity, E is the hotwire voltage, a is the 
sensor's yaw angle and k is the sensor's yaw coefficient. A nonlinear least-square fit is performed to 
find A, B, n and k values for each sensor. The yaw coefficient is assumed to be constant following 
J0rgensen (1971). According to Bruun, this method predicts the effective cooling velocity to within 

1% for yaw angles between 0° and 70° and the error reaches only 15% for a yaw angle of 90°. 

In the present work, alignment tests showed the slant-wire a values to be 40.0° ± 0.5°. Typical 
values for the Hinze-formula constants are give in Table 1. Precise determination of the yaw coefficient, 

k requires a very accurate knowledge of the wire angle, a. Typical k values for single yawed sensors 

reported in the literature are around 0.1. According to a study cited by Bruun (1995), the value of 

the calculated yaw coefficient k2 is very sensitive to an assumed yaw angle error, aa; a yaw-angle 

uncertainty as low as 1° can produce negative values for k2, which is not physically possible. As noted 
above, the present yaw-angle uncertainty is 0.5°. There could, therefore, be considerable errors in k. 
Fortunately, the individual uncertainties from a and k cancel in Hinzes formula, reducing the combined 
uncertainty on the right-hand-side to less than 1%. 

Separating the effective cooling velocity, Ve, measured by the slanted sensors into U and W requires 
a careful treatment of the experimental data. First and foremost, since the two slanted sensors sweep 

different (y, z) planes, the data from slanted sensors are shifted such that the slanted sensors spanwise 
locations match with those of the the middle sensor.  Despite the effort to align the boundary layer 
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Sensor A B n k 
Freestream -1.591 0.582 2.258 - 
Boundary Layer -1.419 0.538 2.377 - 
Top Slanted -1.546 0.551 2.328 0.160 
Bottom Slanted -1.879 0.665 2.209 0.180 

Table 1: Typical calibration constant values obtained during multicomponent experiments. 

sensors with respect to the flat surface, the misalignment between the sensors cannot be avoided 

completely. This implies that each sensor is sweeping the boundary layer at a different height from 

the flat surface. However, the position of each sensor with respect to the flat surface is extremely 

important for multicomponent data analysis. To account for any misalignment of sensors in the wall- 
normal direction, the wall location is estimated for each sensor at between-roughness z stations. This 

means that the effective cooling velocity data recorded by each sensor has a different y array, and the 
Ve data obtained from all three sensors must be interpolated onto a single array of heights. Once this 

is completed, the spanwise and streamwise velocities are resolved from the effective cooling velocity 
data obtained from the slanted sensors. 

With the available streamwise and spanwise velocity components, the wall-normal velocity com- 
ponent, V and the wall-normal velocity perturbation, V", can be obtained by using the appropriate 

form of the continuity equation. The first order derivatives dU/dx and dW/dz in this equation are 
approximated by central differences and V is estimated by numerically integrating dV/dy using the 

no-penetration boundary condition at the wall: V — 0 at y = 0. Generating derivatives from experi- 

mental data is generally to be avoided as small differences between measurements points can easily be 

overwhelmed by measurement uncertainties at each of the points. Nevertheless, the approach taken 

here is seen as the most effective means of estimating V across the boundary layer. But, doing so 
requires that measurements in closely spaced x planes be obtained. 

The results of the multicomponent experiments include U, V, W, and ftx, the steady streamwise 
vorticity, in the domain 310 mm < x < 550 mm, 0 mm < y < 4.7 mm and -9.5 mm < z < 9.5 mm. 
The grid has variable spacing in the streamwise direction with Ax as low as 2.5 mm in the near 
wake of the roughness array and gradually increasing to as high as Ax = 50 mm in the far wake. A 
typical phase-lock averaged steady flow can be seen in Fig. 5. In this figure, the streamwise flow is 

into the page, the abscissa is the spanwise direction and the ordinate is the wall-normal direction, 
both displayed in units of millimeters. The roughness element that generates the disturbance extends 

between -3.17 mm< z <3.17 mm and is 724 ^m tall. The green contour lines indicate 10% 

increments of dimensionless streamwise velocity U, the vector field represent the dimensionless V 
and W, and the colored contours represent the magnitude of the streamwise vorticity. The heavy 

horizontal line segment at the top right corner is equivalent to a velocity magnitude of 10% ü«,. The 

colored contour levels that represent Qx are shown on the right-hand side of each figure and have the 
units of inverse millimeters. Warmer colors (yellow, orange, red, etc.) represent a positive streamwise 

vorticity (into the page), indicating a clockwise fluid rotation in these figures. Conversely, the colder 
colors (blue, turquoise etc.) represent negative streamwise vorticity (out from the page), indicating a 
counter-clockwise fluid rotation in the figures. White indicates zero streamwise vorticity. 

Figure 5 and results at the other streamwise locations appear exactly as one would expect. In 

the near wake, the flow is decelerated behind the roughness element. Moving downstream, a pair 
of counter-rotating streamwise vortices strengthen and then decay. Meanwhile, the decelerated flow 

along the roughness-element centerline, z = 0, gradually becomes accelerated due to the action of 
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the streamwise vortices. This scenario is consistent with flow-visualization images by Gregory and 

Walker (1956) and the general transient-growth scenario. Integrating the U'rms and W'ms disturbances 
at each x location gives the energy evolution curves shown in Fig. 6. These curves suggest that in 

the near wake of the roughness element, the U' component has large energy while the W component 

starts with little energy and grows. Then, once the spanwise component energy has increased to an 

appreciable level, transient growth begins with decaying the streamwise vorticity associated with W 

component energy leading to algebraic growth of the W disturbance energy. 

This description of the transient growth process was reported in the Final Report for AFOSR 
Project FA9550-05-1-0048. However, when efforts were made to compare the results in Fig. 5 to 

the DNS results by Rizzetta and Visbal (2007), it became apparent that the W component energy 

measured in the experiment greatly exceeded that calculated by the DNS. Given that the DNS results 
are thought to be valid (Denissen and White 2008), the most likely explanation for the discrepancy 
is a systematic measurement error that affects W but not U'. The W component is given by 
the difference (essentially) of the output of the two slant wires and, because the W component is 

very small, the difference is subject to large uncertainties. To better understand how measurement 
uncertainty may lead to systematically too-large W components, an extensive Monte Carlo simulation 
of the data analysis approach and measurement uncertainty was performed. This analysis is described 

below. The importance of properly resolving this point is driven by the biorthogonal decomposition 

with partial data. The more information is available about a disturbance (i.e., which components) and 
the more certain that information is, the better the resulting C(a) distribution will be as a predictor 
of disturbance evolution. The W data in question is especially important in this regard because it is 
the measurable component of Qx, the initial streamwise vortex that gives rise to transient growth. 

3.3    Monte Carlo analysis of measurement uncertainty 

The hotwire measurement uncertainty is driven by two main factors: the uncertainty of the hotwires' 
calibration constants and the uncertainty of the wall location that is estimated as part of the data 

analysis. The hotwire voltages at each measurement point are not considered as sources of uncertainty 
because the mean voltage at each point is well resolved by long-duration samples. Nevertheless, the 
calibration uncertainty leads to velocity uncertainty at each point. 

The initial approach to understanding the uncertainties of the W and other velocity components 

used a straightforward technique described by Bevington (1969). That is, uncertainties in calculated 

quantities are estimated by taking the partial derivatives of the calculated quantities with respect to 

each of the uncertain input quantities and summing derivatives squared multiplied by input disturbance 
variances. Including proper treatment of input quantity covariances, a calculated quantity u that is a 
function of x and y has a variance (uncertainty squared) of 

•,.-(*),<+*(£*)*+(s)''* <« 
where a2 terms are variances and o\. is the covariance of x and y. If u was also a function of z, 
Eqn. (29) would include six terms, the three terms listed plus terms to account for u\, <J\Z and a2

z. 
The covariance terms are important because the hotwire calibration produces four constants per wire, 

A, B, n and k, as well as four variance terms and six covariance terms. 

The straightforward approach successfully estimated the uncertainty on the effective cooling veloc- 

ity Ve at each point but quickly bogged down with the more complex tasks of propagating uncertainties 

into the disturbance components and wall-normal integrals of these components. The fact that the un- 
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Figure 5: Steady flow properties at x = 350 mm. 
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Figure 6: Total disturbance energies of the streamwise and spanwise velocity disturbance components. 
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certainty arises from the initial calibration makes the uncertainties of all the velocities highly correlated 

and this leads to massive and unworkable covariance expressions. 

As an alternative approach, we have conducted a Monte Carlo simulation of the experiment to 

provide uncertainty estimates. The basis for this technique is to repeatedly analyze the raw experimen- 

tal data with randomly selected parameter values drawn from probability distributions with the same 

characteristics as the uncertain parameters. That is, each day's calibration produced four calibration 

constants for each of the four hotwires and uncertainty estimates for each of those constants. Our 
approach is to repeatedly analyze the experiment not with the 16 calibration constants as measured 
but with 16 parameters drawn from Gaussian probability distributions with means equal to the 16 pa- 

rameters and standard deviations equal to the parameters' uncertainties. Furthermore, we are careful 
to account for covariances so coupled uncertain quantities are treated correctly. By performing the 

data analysis hundreds or thousands of times for different hypothetical calibration sets, we are able to 
generate converged statistical outcomes of the experiment and use those to understand experimental 

uncertainty in the face of highly covariant data and nonlinear processes (e.g., the slantwire response 
and slantwire response differences to give W). 

Figure 7 shows a result of the Monte Carlo analysis process. In these plots, the original hotwire 

data was analyzed 500 times, each time using a different set of randomly selected hotwire calibration 
constants. The solid line profiles represent the A/< and \kß disturbance profiles of the U' and W 
disturbances as calculated using the nominal set of hotwire calibration constants. The solid symbols 

represent the mean value of the 500 analyses and the error bars represent the standard deviation of 
the analyses about the mean. The mean of the U simulations are in good agreement with the results 

obtained using the nominal calibration constants. So, for the 0 data, the repeated analyses only serve 
to establish uncertainty information. Hypothetically, the actual set of hotwire calibration constants is 

one of the set represented by the 500 repeated analyses so the standard deviation bars indicate the 
probable range of the actual data. For the W profiles, the mean of the analyses is slightly larger than 

the result obtained using the nominal value. This is likely a result of the strongly nonlinear equations 
for W. Thus, for the W, the Monte Carlo approach results in a revised value for the best-estimate 

spanwise disturbance relative to the value generated from a straightforward calculation. 

Combining all the spanwise disturbance modes (i.e., integrals of the profiles shown in Fig. 7) for 
repeated analyses gives histograms or probability distributions for the total disturbance energies. Such 

a plot is shown in Fig. 8 for x = 400 mm, the same location shown in Fig. 7. This shows a relatively 
wide range of possible energy outcomes corresponding to the range of possible hotwire calibration 
coefficients. This plot does not indicate that the W energy might exceed the U' disturbance energy 
at x — 400 mm; the outputs are correlated and larger U' disturbances tend to occur with larger W 
disturbances. What the plot does establish is that the range of probable total disturbance energy 
values are quite large relative to the energies' most-likely values. The positive skewness of the W 

disturbance energy distribution also reinforces the strongly nonlinear nature of the spanwise disturbance 
calculation. 

Repeating the Monte Carlo analysis at all streamwise locations yields the streamwise and spanwise 

disturbance energy evolution with rigorous uncertainty estimates. Figure 9 shows the energy evolution 
resulting from a straightforward calculation plus the mean of 355 Monte Carlo analyses at each x 

and 95% confidence intervals for the disturbance energy. (95% confidence intervals represent ±1.96 
standard deviations.) First, it is obvious that the energies plotted in Fig. 9 exceed the energies resulting 
from the earlier straightforward analysis presented in Fig. 6. This is a result of a revised normalization 
standard that is more consistent with how DNS results are analyzed. The more significant point 

is that the Monte Carlo analysis does not appreciably change the spanwise component disturbance 
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Figure 7: 0 and W profiles at x = 400 mm for the Xk (left) and Xkt3 spanwise disturbance modes. 
Solid lines are disturbance profiles generated using nominal hotwire calibration constants; symbols are 

the mean values of N = 500 analyses with randomly selected hotwire data; error bars are the standard 

deviations of the N = 500 analyses. 

0.08 

Figure 8: Total disturbance energies of the streamwise and spanwise disturbance components at 
x — 400 mm. Curves are normal distributions with means and standard deviations to match the 
histograms of N — 3000 analyses. 
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Figure 9: Streamwise evolution of the total disturbance energy of the streamwise and spanwise distur- 
bance components. Monte Carlo results are the mean and 95% confidence intervals for 355 analyses. 

energy. The experimentally measured values remain much higher than the equivalent DNS results by 
Rizzetta and Visbal (2007). Moreover, the uncertainty bounds on the spanwise disturbance energy do 

not include the energy calculated by the DNS. Thus, it is a strong possibility that a procedural error 
in the hotwire calibration or some other experimental protocol produces these erroneously large W 

disturbances. We are working to resolve this problem prior to publication of the results. 

4    Biorthogonal Decomposition 

In spite of the suspected error in the W data, it is possible to proceed with biorthogonal decomposition. 

For this, three approaches were implemented: decomposition of the DNS data by Rizzetta and Visbal 

(2007), partial-data decomposition of the experimental U' data, and partial-data decomposition of 

the experimental U' and W data. 

DNS data lends itself particularly well to biorthogonal decomposition because full, accurate dis- 

turbance data is available on a fine grid. For this project, DNS data corresponding to Re^ = 202 

and 339 roughness arrays was provided by Dr. Donald Rizzetta of AFRL. The simulation is described by 
Rizzetta and Visbal (2007); it is designed to simulate the experiments by Ergin and White (2006). The 
Rek = 202 configuration has a relatively low level of unsteady disturbances and steady disturbances 

undergo transient growth. In the Re^ = 339 configuration, there are large unsteady fluctuations and 
the flow breaks down to turbulence about 100 mm downstream of the roughness array. Thus, the 
/?e/< = 202 configuration is used here for decomposition. 

To begin, data from x = 325 mm is selected. This position is sufficiently close to the roughness 

array at x = 300 mm to be in the near-wake receptivity region but not so close that strong disturbances 
that cannot be captured by the OS Equation corrupt the analysis. The time-averaged quantities making 

up the <p vector, <p = (t/, du'/dx, v', p', w', dw'/dx)T, are extracted from the data and spanwise 

Fourier transforms are performed to yield #(y) for each spanwise wavenumber ß.   The first four 
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Figure 10: Amplitude (top) and phase (bottom) of the complex amplitudes of the A- and B-mode 
continuous spectra C(a(k)) for the \k/3 mode obtained from the Rizzetta and Visbal (2007) DNS at 
x = 350 mm. The optimal disturbance modes for the same ß and Re$ is shown for comparison. 

spanwise modes, X^, \k/2< ^k/z (the roughness diameter) and Afc/4, are used as the 4>\x inputs to 
Eqn. (18). Each spanwise mode has a different ß and, therefore, a different a(k) distributions and 

■{p(y,a(k)) adjoint modes. 

Equation (18) is solved numerically using a spectral technique using 2 x 487 vorticity modes as 

a discretized approximation of the continuous spectrum. There are two linearly independent vorticity 

branches called the A and B modes; each has 487 discrete solutions that are logarithmically distributed 

from k = 0.01 to 12.5. Results for the Afc/3 mode's C distribution are given in Fig. 10. This plot 
shows that the A and B mode amplitudes are nearly identical and their phases are nearly opposite. (A 
and B are linearly independent so no cancellation should be expected.) Also shown are \C\ distributions 
for the A and B modes of the optimal \k/3 disturbance. The roughness-induced disturbance is clearly 
not optimal. And, because the purely imaginary a increases with increasing k, it is clear that the 
roughness-induced disturbance will decay substantially faster than the optimal disturbance. Figure 10 
is the first rigorous quantification of the receptivity of transient growth to roughness and provides the 
first quantitative description of how roughness-induced disturbances are suboptimal. 

Of course, the C(ct) data is only useful to the extent that it can accurately reconstruct the 

disturbance profiles and the downstream evolution of the disturbances. Figure 11 compares the 
DNS data for the Xk/3 mode's wall-normal 0, V and W profiles. The streamwise disturbance is 

reconstructed exceptionally well while the spanwise and wall-normal disturbances are reconstructed 
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Figure 11: Comparison of A/c/3 wall-normal disturbance component profiles generated by DNS (sym- 
bols) at x = 325 mm to profiles reconstructed from C(a) distributions generated by Eqn. 18 (lines). 

with somewhat less accuracy. Because the comparison is made at the location from which the input 
data is drawn, these profiles should match exactly. The extent to which they do not indicates that the 
flow is not perfectly modeled by the OS Equation. Non-parallel effects, finite-amplitude disturbances 
and non-zero Reynolds stresses all might lead to the discrepancies between the DNS results and the 
reconstructed profiles. It should be noted that the discrepancies that do exist are about 0.5% of the 
maximum U disturbance, on the order of the non-parallel terms neglected from the OS equations, 
Reg-1. Some ripples are evident in the W profile above 77 = 2. This may be an indication that a finer 

discretization of the continuous spectrum could produce improved results. 

The ability of the biorthogonal decomposition to predict disturbance growth is shown in Fig. 12. 

This figure compares DNS results for the X^/3 disturbance at four locations to the energy evolution 

predicted by the decomposition performed at the most upstream of these points, x = 325 mm. 

Because the boundary layer thickness increases over the measurement domain, the streamwise position 

is made nondimensional by integrating x from x^ to a position of interest normalized by the local 
boundary layer thickness <5(x) as 

F dx tmim (30) 
The biorthogonal decomposition is performed using a parallel-flow approximation and using £ only 

accounts for non-parallel effects in a crude way. Nevertheless, the ability of the biorthogonal decom- 

position to predict downstream energy growth is quite good for a distance exceeding 1005. Also shown 
is the energy of the \k/3 mode streamwise disturbance energy measured by the experiment. Error 

bars represent 95% confidence intervals. The comparison makes clear that the experiment and DNS 

differ in some important respects but are in general qualitative agreement. Overall, the success of 

the biorthogonal decomposition to analyze DNS data even with relatively large steady disturbances is 
quite good. 

The two attempts to decompose the experimental data were not as successful as the decomposition 
of the DNS data. The first attempt was to decompose using 0 and W data. This resulted in reasonably 
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Figure 12: Comparison of stream wise-disturbance energy of the A/c/3 disturbance mode of the DNS 
simulation, the biorthogonal decomposition of the simulation data and the experiment. 

accurate 0 profiles but inaccurate W profiles. This reinforces the notion that the W data is incorrectly 

measured. It is expected that the disturbances are reasonably well modeled by the OS Equation. The 

DNS results reinforce this view. So, the fact that the modes of the OS Equation cannot reproduce the 
measured results indicates the measurements are not solutions of the OS Equation. And, as would be 

expected from a decomposition of incorrect data, the energy evolution predicted by the decomposition 
do not agree with either the experimental or DNS results. 

Second, a decomposition was attempted using just 0 data. Although this data is thought to 
be accurate, the decomposition using this limited input data was not successful. The 0 profile was 
reproduced correctly but the energy evolution was not. Because the V and W represent the initial 
condition of transient growth but no information about either of these disturbances was supplied to 

the decomposition procedure, it is not surprising that this effort did not succeed. It is clear that 
in performing decompositions with partial data, it is necessary that the input data include some 

information about the decaying streamwise vortex that initiates transient growth. 

5    Conclusion 

This one-year project, FA9550-07-1-0312, sought to complete the transient growth receptivity study 

begun as AFOSR Project FA9550-05-1-0048. The present work focused on the biorthogonal decom- 
position of measured disturbances behind a spanwise array of cylindrical roughness elements and a 
DNS study of the experiment. 

Comparison of the experimental and DNS results proved quite useful as it revealed that the span- 
wise disturbances measured in the experiment to be incorrect. An extensive effort to reanalyze the 
experimental data using a Monte Carlo-based error propagation technique clearly establishes the dif- 
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ference between the experiment and DNS in terms of the spanwise disturbance velocities. The Monte 

Carlo technique is quite general and is an effective means of analyzing the uncertainty of experimental 
results when instrument calibration uncertainties lead to highly covariant uncertainties in the results. 

Biorthogonal decomposition was performed on both experimental and DNS data. The effort was 

successful for the DNS data. Reconstructed disturbance profiles are in good agreement with the 

original data and the energy evolution predicted by the decomposition is in good agreement with 
the DNS results for an extensive streamwise extent. Most importantly, the results are the first to 
rigorously quantify transient growth receptivity and are the first to explicitly quantify the way in which 

roughness-induced disturbances differ from optimal disturbances. 

The decomposition efforts were not successful using the experimental data. When incorrect span- 

wise disturbances were included in the calculation, these were not reproduced. This reconfirms that 

the data are erroneous. When only the streamwise disturbances were included there was insufficient 
information about the initial disturbance environment to correctly predict downstream behavior. 

Overall, the goal of analyzing transient growth receptivity has been partially achieved. Efforts 

using the DNS data were successful and confirm important points about non-optimal disturbances. 
However, more work remains before experimentally measured disturbances can be analyzed in the 
same manner and with the same success. It is important that these efforts continue because DNS of 

surfaces with realistic distributed roughness will remain prohibitively difficulty for some time. 
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